Wednesday, June 17, 2009

Volatile Arrays in Java

I get asked a lot about how the volatile keyword interacts with arrays, so it is probably worth a blog post on the subject.

Those of you who have read my posts on volatile (Volatile Fields and Synchronization, Volatile Does Not Mean Atomic and, most importantly, What Volatile Means in Java) will have a pretty good idea of what volatile means, but it is probably worth it to provide a reminder.

Basically, if you write to a volatile field, and then you have a later read that sees that write, then the actions that happened before that write are guaranteed to be ordered before and visible to the actions that happen after the read. In practice, what this means is that the compiler and the processor can't do any sneaky reordering to move actions that come before the write to after it, or actions that come after the write to before it. See my post on What Volatile Means in Java for more detail.

With that out of the way, let's go through some examples of what you can do with volatile arrays:
volatile int [] arr = new int[SIZE];

arr = arr;
int x = arr[0];
arr[0] = 1;
The first lesson to learn, which will guide us here, is that arr is a volatile reference to an array, not a reference to an array of volatile elements! As a result, the write to arr[0] is not a volatile write. If you write to arr[0], you will get none of the ordering or visibility guarantees that you want from a volatile write.

What examples are there of a volatile write in the code above? Well, both of the writes to arr — the self-assignment and the write of new int[SIZE] — are volatile writes, because they are writing to arr, not one of its elements.

That explains where the volatile writes are. Where are the volatile reads in our example? It turns out that each of the lines after the declaration contains a volatile read:
arr = arr
This one is easy. The volatile read is on the right hand side of the assignment statement.
int x = arr[0];
This one is slightly more subtle. The volatile read is not the read of the array element. The right hand side of that assignment is a two step process. First, you read the array reference, then you read the 0th element of that array. The volatile read is the read of the array reference, not the read of the 0th element.
arr[0] = 1;
The previous example should give you a hint of where the volatile read is on this line. As in that example, the left-hand side is a two step process. First, you read the array reference, then you assign to the 0th element of that array. As odd as it seems, the read of the array reference is a volatile read.

The astute reader will notice that there is no actual way to get volatile write semantics by writing to an element of an array referenced by a volatile field. The easiest way to get volatile array semantics is to use the Atomic[Reference/Long/Integer]Array classes in java.util.concurrent.atomic, which provide volatile semantics for reads and writes of individual elements.

(Why not Float/Short/Double Array? With APIs, you never ask "why not", you ask "why". Meanwhile, you have 32- and 64-bit bit patterns, so the Float.floatToIntBits and Float.intBitsToFloat family of functions are your friends.)

These classes are somewhat problematic, though. If nothing else, you are endlessly boxing and unboxing values, which may make access expensive. Ugh — I really do know better than this, really! As a result, there is more to this story.

You may have noticed that I did provide a way of getting a volatile write above with just arrays: by writing out a self-reference. I have been asked if that technique can be leveraged to provide volatile access to array elements. Here's what that would look like:
// I wouldn't do this if I were you.
volatile int [] arr = new int[SIZE];

arr[0] = 1;
arr = arr;
This definitely does provide the volatile write. However, what good does it do you? The virtue of a volatile write is that a corresponding read can detect that it happened, and do something based on the new value. For example, you can use a volatile flag to force one thread to loop indefinitely until another one sets the flag. In this case, you can't actually detect that another thread performed the write, because it is writing the same value to the variable.

You can use sun.misc.Unsafe to emulate the behavior of a volatile array. But not everyone is working on a Sun VM. And they are trying to discourage the adoption of sun.misc.Unsafe, so I'm not going to put the code here.

Don't despair too much, though — Doug Lea and the clever folks involved in JSR-166 are working on better solutions for Java 7. More news as events warrant.

Tuesday, June 9, 2009


Mailinator's Paul Tyma linked to me. If you are following from that link, the relevant blog entry you are looking for is probably this one, specifically, the entry labeled "visibility".